MFS with RBF for Thin Plate Bending Problems on Elastic Foundation

نویسندگان

  • Qing-Hua Qin
  • Hui Wang
چکیده

In this chapter a meshless method, based on the method of fundamental solutions (MFS) and radial basis functions (RBF), is developed to solve thin plate bending on an elastic foundation. In the presented algorithm, the analog equation method (AEM) is firstly used to convert the original governing equation to an equivalent thin plate bending equation without elastic foundations, which can be solved by the MFS and RBF interpolation, and then the satisfaction of the original governing equation and boundary conditions can determine all unknown coefficients. In order to fully reflect the practical boundary conditions of plate problems, the fundamental solution of biharmonic operator with augmented fundamental solution of Laplace operator are employed in the computation. Finally, several numerical examples are considered to investigate the accuracy and convergence of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free Axisymmetric Bending Vibration Analysis of two Directional FGM Circular Nano-plate on the Elastic Foundation

In the following paper, free vibration analysis of two directional FGM circular nano-plate on the elastic medium is investigated. The elastic modulus of plate varies in both radial and thickness directions. Eringen’s theory was employed to the analysis of circular nano-plate with variation in material properties. Simultaneous variations of the material properties in the radial and transverse di...

متن کامل

Exact 3-D Solution for Free Bending Vibration of Thick FG Plates and Homogeneous Plate Coated by a Single FG Layer on Elastic Foundations

This paper presents new exact 3-D (three-dimensional) elasticity closed-form solutions for out-of-plane free vibration of thick rectangular single layered FG (functionally graded) plates and thick rectangular homogeneous plate coated by a functionally graded layer with simply supported boundary conditions. It is assumed that the plate is on a Winkler-Pasternak elastic foundation and elasticity ...

متن کامل

Bending and Free Vibration Analyses of Rectangular Laminated Composite Plates Resting on Elastic Foundation Using a Refined Shear Deformation Theory

In this paper, a closed form solution for bending and free vibration analyses of simply supported rectangular laminated composite plates is presented. The static and free vibration behavior of symmetric and antisymmetric laminates is investigated using a refined first-order shear deformation theory. The Winkler–Pasternak two-parameter model is employed to express the interaction between the lam...

متن کامل

Biaxial Buckling and Bending of Smart Nanocomposite Plate Reinforced by CNTs using Extended Mixture Rule Approach

In this research, the buckling and bending behaviour of smart nanocomposite plate reinforced by single- walled carbon nanotubes (SWCNTs) under electro-magneto-mechanical loadings is studied. The extended mixture rule approach is used to determine the elastic properties of nanocomposite plate. Equilibrium equations of smart nanocomposite plate are derived using the Hamilton’s principle based on ...

متن کامل

Bending of Shear Deformable Plates Resting on Winkler Foundations According to Trigonometric Plate Theory

A trigonometric plate theory is assessed for the static bending analysis of plates resting on Winkler elastic foundation. The theory considers the effects of transverse shear and normal strains. The theory accounts for realistic variation of the transverse shear stress through the thickness and satisfies the traction free conditions at the top and bottom surfaces of the plate without using shea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009